Python [Udemy] Парсинг и анализ данных на Python: от азов до автоматизации (2020)

20 Фев 2019
18,529
702,640
113
#1
Автор: Udemy
Название: Парсинг и анализ данных на Python: от азов до автоматизации (2020)

1621931288872-png.41079


Описание:


Чему вы научитесь

  • Работа с данными с помощью pandas и numpy
  • Получение наборов данных из множества источников
  • Преобразование данных и предсказание последовательностей
  • Работа с HTTP, JSON, API, SOAP
  • Парсинг и скрепинг HTML сайтов
  • Визуализация данных: тренды и зависимости
  • Гео-данные м фоновые картограммы
  • Генерация PDF отчетов
  • HTML документы и шаблонизация
  • Отправка email и автоматизация работы
Требования
  • Базовые знания Python
  • Базовые знания HTML
Описание
Центр digital-профессий ITtensive предлагает персонализированные программы с индивидуальными наставниками для освоения актуальных профессий будущего: аналитик данных на Python и программист больших данных.
Курс состоит из 4 больших частей.
1. Анализ данных
Вы изучите работу с импортом, объединением, преобразованием, фильтрацией данных на pandas, а также научитесь предсказывать тренды.
Вы сможете самостоятельно загружать данные в формате CSV, TSV, Excel, извлекать из них значения, находить взаимосвязи между разными наборами данных, преобразовывать и усекать наборы данных. В заключении вы освоите математический аппарат линейной регрессии для поиска линейной связи между данными и эффективно примените его для предсказания значений в будущем.
2. Парсинг данных
Вы изучите получение данных в Python, используя библиотеку requests API и форматы JSON и XML (включая SOAP).
Научитесь работать с неструктурированными данными в HTML, собирать их и преобразовывать в фреймы данных.
Научитесь собирать данные целиком с сайта в несколько потоков: создадите мультипроцессного робота-паука.
В завершении установите SQLite и загрузите все собранные данные в базу, а также научитесь выбирать из базы данных непосредственно в фреймы данных.
3. Визуализация данных
Вы изучите анатомию matplotlib и типы визуализации различных данных: линии, области, столбцы, круговые диаграммы.
Научитесь визуализировать зависимости между данными и линейную регрессию с помощью seaborn: построите ящичковые и парные диаграммы, диаграммы распределения.
Изучите визуализацию временных (хронологических) данных: ряды, скользящие средние, отклонения и "японские свечи".
В завершении разберете работу с гео-данными и построение фоновых картограмм по нескольким наборам данных, используя geopandas.
4. Генерация отчетов и автоматизация
В этом курсе вы научитесь создавать и преобразовывать PDF документы, генерировать их из HTML кода, используя шаблонизатор, отправлять отчеты по e-mail и автоматизировать работу.
В курсе используются библиотеки reportlab, pypdf2, pdfkit, jinja2, smtplib, email, binascii, io, а также бинарный файл wkhtmltopdf. Решаем задачи по созданию PDF документа через холст, разбору PDF документа, объединению PDF документов, созданию HTML и PDF документов из HTML, шаблонизации HTML через jinja2, преобразованию бинарных данных в base64-кодировку. В заключении разберем отправку e-mail, включая HTML-письма и вложенные PDF отчеты.

Для кого этот курс:
  • Начинающие разработчики Python с интересом к анализу данных
  • Веб-программисты, изучающие Python для получения и разбора данных
  • Менеджеры, планирующие использовать Python для автоматизации работы
  • Научные работники, использующие Python для обработки данных


Подробнее:



Чтобы скачать курс, новым пользователям, необходимо Пройти Регистрацию
Если у вас уже есть аккаунт Войти на Форум


Скачать:



Чтобы скачать курс, новым пользователям, необходимо Пройти Регистрацию
Если у вас уже есть аккаунт Войти на Форум